FACILITIES INSTRUCTIONS, STANDARDS, AND TECHNIQUES VOLUME 5-9 # Management and Safe Handling Procedures for Sulfur hexafluoride (SF_6) gas **MARCH 2004** UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION | REPO | Form Approved
OMB No. 0704-0188 | | | |---|---|---|--| | Public reporting burden for this collection of information i maintaining the data needed, and completing and review suggestions for reducing this burden to Washington Hea and to the Office of Management and Budget, Paperwor | ing the collection of information. Send comments red
dquarters Services, Directorate for Information Ope | egarding this burden estimate or any other aspec
erations and Reports, 1215 Jefferson Davis Hi | existing data sources, gathering and ct of this collection of information, including | | 1. AGENCY USE ONLY (Leave Blank) | 2. REPORT DATE March 2004 | 3. REPORT TYPE AND D | DATES COVERED | | 4. TITLE AND SUBTITLE FIST 5-9, Management and Safe Han | | | 5. FUNDING NUMBERS | | 6. AUTHOR(S) Bureau of Reclamation Hydroelectric Research and Technica Denver, Colorado | l Services Group | | | | 7. PERFORMING ORGANIZATIONS NAME
Bureau of Reclamation
Denver Federal Center
PO Box 25007
Denver CO 80225-0007 | S) AND ADDRESS(ES) | | 8. PERFORMING ORGANIZATION
REPORT NUMBER
FIST 5-9 | | 9. SPONSORING/MONITORING AGENCY Melydroelectric Research and Technical Bureau of Reclamation Mail Code D-8450 PO Box 25007 Denver CO 80225 | | | 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
DIBR | | 11. SUPPLEMENTARY NOTES | | | | | 12a. DISTRIBUTION AVAILABILITY STATE Available from the National Technica Road, Springfield, VA 22161 | | Division, 5285 Port Royal | 12b. DISTRIBUTION CODE | | 13. ABSTRACT (Maximum 200 words) Bureau of Reclamation facilities have greenhouse gas that may be responsible accident must be reduced, tracked, an procedures for SF ₆ gas. The document handling practices, training, and risk | ble for global warming. Release of d reported to the EPA. This documnt outlines Reclamation's SF_6 emissions. | f SF ₆ gas into the atmosphere du
ment describes Reclamation's m
ssion reduction goals and strateg | ring maintenance work or an anagement and safe handling | | 14. SUBJECT TERMS SF ₆ , SF ₆ Management, SF ₆ Handling, | SF ₆ Management and Handling, S | SF ₆ Emission Reduction, | 15. NUMBER OF PAGES | | SF ₆ Circuit Breakers, greenhouse gas | | | 16. PRICE CODE | | 17. SECURITY CLASSIFICATION OF | 18. SECURITY CLASSIFICATION OF | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT | OF ABSTRACT UL THIS PAGE UL REPORT UL UL # FACILITIES INSTRUCTIONS, STANDARDS, AND TECHNIQUES VOLUME 5-9 # $\begin{array}{c} \textbf{Management and Safe} \\ \textbf{Handling Procedures for} \\ \textbf{Sulfur Hexafluoride (SF}_6) \ \textbf{Gas} \end{array}$ HYDROELECTRIC RESEARCH AND TECHNICAL SERVICES GROUP UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION **MARCH 2004** # DISCLAIMER This written matter consists of general information for internal Bureau of Reclamation operations and maintenance staff use. The information contained in this document regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation. # **CONTENTS** | | | Page | | | | |-----------------------------------------------------------------------------|----------------------------------------------------------------------------|------|--|--|--| | 1. | Introduction | 1 | | | | | 2. | Scope | 2 | | | | | 3. | Responsibility | 2 | | | | | 4. | Management Plan | 3 | | | | | 5. | Emission Reduction Goals | 4 | | | | | 6. | Equipment Inventory | 4 | | | | | 7. | Emission Measurement | 5 | | | | | 8. | Reporting Requirements | 5 | | | | | 9. | Safe Handling Procedures for SF ₆ Gas | 5 | | | | | 10. | Training | 6 | | | | | 11. | Catastrophic Release Plan | 7 | | | | | 12. | Risk Assessment and Mitigation | 8 | | | | | 13. | Recycling, Disposal, Environmental Protection, Transportation, and Storage | 9 | | | | | 14. | Procurement of SF ₆ Equipment | 9 | | | | | 15. | Gas Carts | 9 | | | | | Appendix A: SF ₆ Location at Reclamation Facilities - 2003 | | | | | | | Appendix B: SF ₆ Emissions Inventory Reporting Protocol and Form | | | | | | ### 1. INTRODUCTION Bureau of Reclamation (Reclamation) facilities have more than 1,000 power circuit breakers; the most modern of them use sulfur hexafluoride (SF_6) gas as an arcinterrupting/quenching and insulating agent. Breakers of this design are now the standard; for some applications, they are the only power circuit breakers available in the industry. Reclamation currently has some 65 power circuit breakers of the SF_6 design, as well as other SF_6 equipment (Appendix A). Reclamation plans to procure more SF_6 breakers in the future to meet its needs. According to the Electric Power Research Institute (EPRI)¹, SF₆ is a synthetic gas that was developed for use as an electrical insulating medium for the power industry. Originally, its outstanding insulation characteristics were used primarily to reduce power circuit breaker interruption time; reducing interruption time enhances power system stability. As concerns escalated regarding poly-chlorinated biphenyls (PCBs) that were found in insulating oil used in older breakers, the use of SF₆ insulated breakers grew. SF_6 is chemically inert, nonflammable, and nontoxic. Although SF_6 gas is not detrimental to the ozone layer, it is a highly potent greenhouse gas. It is 23,900 times more effective at trapping infrared radiation than carbon monoxide and is stable in the atmosphere for some 3,200 years. Although the percentage of SF_6 found in the atmosphere is relatively small, the rate of growth is alarming. Currently, there is no Federal legislation curtailing the use of SF_6 . However, the Environmental Protection Agency (EPA) sponsors and facilitates a program for a voluntary reduction of SF_6 emissions within the electric power industry. This program provides a forum for EPA and the electric power industry to work together to reduce SF_6 emissions to technically and economically feasible levels, thereby helping to reduce global climate change. Implied is that if voluntary programs are not successful, legislation may be required to restrict the use of SF_6 . Restricting the use of SF_6 would be extremely inconvenient to the power industry, including Reclamation and the Federal Power Marketing Administrations. Although Reclamation has not signed a memorandum of understanding with EPA establishing official compliance with the program, Reclamation will voluntarily pursue a program of SF_6 management and handling that will help reduce SF_6 emissions and promote safety for employees and the public. For more information on EPA's SF₆ Emissions Reduction Partnership for Electric Power Systems, visit its website at <www.epa.gov/highgwp1/sf6.> ¹ "SF6 Gas Condition Assessment and Decontamination – Technical Report," June 2000, and "Practical Guide to SF6 Handling Practices," February 2002, both by the Electric Power Research Institute, Palo Alto, California. ### 2. SCOPE Use of SF_6 circuit breakers and other SF_6 equipment does not come without consequences. In addition to the environmental concerns addressed in the Introduction, SF_6 gas and gas byproducts pose some risk to personnel. SF_6 gas is heavier than air. In enclosed areas, such as in powerplants, it can displace breathable air. The toxic byproducts released when SF_6 gas interrupts the arc plasma in a circuit breaker are also of concern. Decomposition products in the form of metallic fluoride powder are toxic to humans who breathe or touch them, and adequate personal protective equipment (PPE) and training are essential for personnel safety. This FIST volume outlines the basic requirements for SF₆ management and handling at Reclamation power facilities to address environmental and safety issues. Key elements include: - ◆ Establishing and progressing toward local and Reclamation SF₆ emission reduction goals that meet EPA guidelines - ◆ Developing and maintaining local records and reporting annually - ◆ Developing and maintaining a local gas-handling plan that minimizes release of SF₆ - ◆ Following guidelines developed and used by most of the power industry worldwide - ◆ Providing proper training in recycling, using, handling, transporting, containing spills, and reporting SF₆ releases - ◆ Developing and maintaining a local SF₆ and SF₆ byproduct catastrophic release emergency action plan - ◆ Developing and using an SF₆ risk assessment and mitigation strategy - ◆ Procuring electrical equipment that is "ultra-low leakage" and performing site installation that follows all environmental and safety considerations Although most Reclamation SF₆ equipment currently in service is located outside of powerplants and, therefore, may result in lower gas concentrations, safety and environmental precautions still apply, and a local SF₆ plan is essential. ### 3. RESPONSIBLITY The Power Resources Office, D-5400, is Reclamation's lead office for addressing corporate SF_6 management issues and any coordination with EPA. Area and project offices are responsible for implementing adequate SF_6 management and handling practices to comply with this FIST volume and any applicable State and Federal regulations and statutes. Specific responsibilities are listed below. ### Power Resources Office, D-5400 - ◆ Provide corporate guidance to field offices on current SF₆ regulations, statutes, policy, and practices - ◆ Provide liaison with EPA, power marketing administrations, and other utilities as part of Reclamation's voluntary and unofficial participation in the EPA "SF₆ Emissions Reduction Partnership for Electric Power Systems" - ◆ Establish Reclamation SF₆ emission reduction goals - ◆ Report Reclamation's SF₆ status to EPA, including emission reductions, when appropriate ### Area/Project/Regional Office - ◆ Establish and accomplish office SF₆ emission reduction goals - ◆ Develop, maintain, and execute a local SF₆ Management and Safe Handling Plan in accordance with this FIST volume and EPA requirements - ◆ Report annually to the Power Resources Office the status of the local SF₆ program - ◆ Establish a schedule for accomplishing the requirements of this FIST volume and a process for peer reviewing generated documents ### 4. MANAGEMENT PLAN Each Reclamation facility with SF_6 equipment will develop an SF_6 Management and Handling Plan that clearly defines how SF_6 is to be managed locally. The plan will include: - ◆ An SF₆ emission reduction goal and a strategy for accomplishing it - ◆ An inventory of all SF₆ equipment - ◆ A strategy for measuring changes in SF₆ inventory (and, thus, leakage) for tracking and reporting purposes - ◆ A reporting process to advise the Power Resources Office, D-5400, of the current status of the local SF₆ plan - ◆ An SF₆ Gas Safe Handling Procedure that is compliant with EPRI guidelines - ◆ A training plan for staff engaged in SF₆-related work - ◆ A catastrophic-release plan - ◆ A risk assessment and mitigation strategy ◆ A commitment to recycling, disposal, environmental protection, transportation, and storage consistent with applicable regulations, laws, and industry best practices The existence and adequacy of SF₆ Management Plans will be verified under the management portion of the Reclamation Power Review of Operation and Maintenance (O&M) Program. ### 5. EMISSION REDUCTION GOALS A recent study indicated that Reclamation annually loses to emissions approximately 1,300 pounds of SF₆, out of a nameplate and storage capacity of some 16,500 pounds (or approximately 7.9 percent). Emissions result from properly functioning equipment (because of static and dynamic operation), from leakage (because of old or deteriorated gaskets and seals), and from gas escaping into the atmosphere when gas is either transferred into equipment or extracted from it for disposal, recycling, or storage.² Reclamation's goal is a 10-percent annual reduction in emissions from 2003 levels (a 40-percent reduction by 2007), where technically and economically feasible. This reduction will be achieved by replacing existing SF₆ breakers with "ultra-low" leakage breakers and by using more effective handling practices. Emission reduction goals beyond 2007 will be based on progress to date and emerging utility practices developed before that year. Each Reclamation office with SF_6 equipment will establish written emission reduction goals and a strategy to support the Reclamation goal, including: - ◆ Achieving a 10-percent annual reduction in leakage (from 2003 levels), where technically and economically feasible - ◆ Replacing older, higher-emission SF₆ equipment with newer, "ultra-low" leakage designs - Refurbishing existing equipment to meet "ultra-low" leakage criteria - ◆ Improving maintenance and construction practices to control or reduce emissions - ◆ Replacing or repairing existing equipment seals, gaskets, alarms, gages, monitoring devices, etc., to reduce leakage and allow for proper monitoring ### 6. EQUIPMENT INVENTORY Each Reclamation office with SF_6 equipment will inventory all SF_6 equipment—including gas carts—to identify equipment designation, location, and nominal quantity of SF_6 in pounds. Equipment that is "sealed for life" or contains less than 15 pounds of SF_6 is exempt from this inventory. ² Definitions of emission sources are from Bonneville Power Administration. Appendix A is a recent inventory of SF_6 equipment known to be at Reclamation facilities. This list should be considered informational only and must be supplemented with an official inventory. ### 7. EMISSION MEASUREMENT According to EPRI, leakage for a sound SF₆ installation should be less than 1 percent annually. At least annually, each Reclamation office with SF₆ equipment will perform the required SF₆ inventory measurement using the protocol defined in Appendix B. ### 8. REPORTING REQUIREMENTS Each Reclamation office with SF_6 equipment will report annually, by January 1, the status of the local SF_6 program, including the amount of emission in pounds and details of any catastrophic release. The reporting protocol and form found in Appendix B should be used for reporting purposes. The Power Resources Office, D-5400, will report the status of the Reclamation SF₆ program to EPA, when appropriate, using the same protocol and format as shown in Appendix B. In the first annual report to the Power Resources Office, due June 1, 2004, each office with SF_6 equipment will provide an update to the inventory in Appendix A. The update will establish a baseline of Reclamation's SF_6 equipment. ### 9. SAFE HANDLING PROCEDURES FOR SF₆ GAS To achieve SF₆ emission reduction goals and to enhance employee and public safety, safe handling procedures must be developed and followed. Existing SF_6 circuit breakers at Reclamation facilities were bought and installed with little consideration beyond that found in the manufacturer's instruction book and the limited information in the previous version of this FIST volume. Existing maintenance practices have developed in accordance with this limited knowledge. Better construction and maintenance handling procedures for SF_6 must be developed using today's accepted practices. There are many technical considerations and procedures that must be taken into account for handling SF₆ gas safely. A comprehensive discussion of these requirements is included in a document entitled, "Practical Guide to SF₆ Handling Practices – Technical Report," Electric Power Research Institute, Palo Alto, California (February 2002). Rather than re-creating extensive SF₆ handling procedures in this FIST volume, Reclamation endorses the EPRI document as the basis for safe handling procedures for SF₆ gas. Local SF₆ management programs should incorporate all considerations from the EPRI document including: - ◆ Equipment classification - Risks, warning signs, and written instructions - ◆ Handling procedures - Personal protective equipment - ◆ Disposal and environmental protection - ◆ Transportation and storage Copies of the EPRI "Practical Guide to SF₆ Handling Practices" were made available to Reclamation power offices with the distribution of the 2004 revised version of this FIST volume. Additional copies of the EPRI document may be acquired by contacting: ### **EPRI** 3412 Hillview Avenue, Palo Alto, CA 94304 PO Box 10412, Palo Alto CA, 94303 1-800-313-3774 (select option 2) <askepri@epri.com> Mention that you are with the Bureau of Reclamation, which is a member of EPRI through the Western Area Power Administration. Please reference Report No. 100945. There is no charge for EPRI documents produced in membership target areas. EPRI documents may also be obtained online at <www.epri.com>. If you are not presently an EPRIWEB user, you can request a password at <www.epri.com> by clicking on the "New Users Register" area (below the customer log-in box). At the next screen, follow the directions and fill in the information requested. EPRI documents acquired in this way are for Reclamation and Reclamation-contractor use only. In addition to the above EPRI document, reference should be made to manufacturers' instructions when adopting an SF_6 safe handling plan. ### 10. TRAINING Only properly qualified and trained personnel should work with SF₆ and SF₆ equipment. Each Reclamation office with SF₆ equipment will develop and maintain an SF₆ training plan. Training in proper handling procedures should always be provided by the contractor who furnishes and installs SF₆ equipment. SF₆ training in operation, maintenance, and safety procedures is available from the power marketing administrations (Western Area Power Administration and Bonneville Power Administration), who deal with SF₆ equipment extensively. Third-party commercial providers of SF₆ training include, but are not limited to: - ◆ DILO Company, Inc. <www.dilo.com> - ◆ AVO Training Institute <www.avotraining.com> - ◆ Associated Training Corp. <www.atc-trng.com> - ◆ Mitsubishi Electric Power Products, Inc. <www.meppi.com/service.asp> Refresher training in SF₆ handling procedures should be accomplished annually after initial comprehensive training. Since SF₆ enclosures should be treated as confined space, training in confined space practices is required to ensure that staff are aware of the risks and take proper precautions. Confined space training is available from established Reclamation sources. ### 11. CATASTROPHIC RELEASE PLAN A catastrophic release of SF_6 is the result of sudden, severe failure—and possible destruction—of the equipment containing the gas. Catastrophic release will introduce into the environment SF_6 gas and SF_6 decomposition byproducts, in gaseous and powder form, complicating what might already be a bad situation, such as explosive porcelain failure, fire and smoke, debris, and unit outage. A catastrophic release of SF_6 may be caused by an incident that requires reporting under the Reclamation Power O&M Incident Evaluation and Reporting Program (Directive and Standard FAC 04-02). The incident should also be reported immediately through proper channels via the Reclamation Emergency Notification Systems (ENS). In addition to protective and mitigation measures described in EPRI's "Practical Guide to SF₆ Handling Practices" (section 5.4), each office with SF₆ equipment must have a plant-specific SF₆ Catastrophic Release Plan, including: - ◆ Location and use of protective clothing and self-contained breathing apparatus - ◆ Location and awareness of material safety data sheets (MSDS) - ◆ Identification of areas where gas and powder might collect - ◆ Location of air intakes and an evaluation of their potential to spread gases - Consideration of additional ventilation to offset the presence of decomposition gases - ◆ References to the Reclamation Emergency Notification System, the responsible Hazardous Materials and Safety Offices, and to a qualified industrial hygienist that is knowledgeable and trained in SF₆ hazard evaluation and clearance re-entry criteria. - ◆ A list of contractors able to provide cleanup, decontamination, and disposal - ◆ Identification of the appropriate state environmental office for notification of release, where required - ◆ Decontamination and neutralization procedures and materials and identification of sources of these materials or locations where they are stockpiled. As a minimum, these procedures must include decontaminating plant and power equipment and personnel, including neutralizing wash; vacuuming powder from clothing; neutralizing all test and maintenance equipment; and appropriately disposing of clothing and wipes. Decontamination procedures must be adequate to return the equipment, the plant, and all personnel to a decontaminated state ### 12. RISK ASSESSMENT AND MITIGATION Each Reclamation office with SF_6 equipment will develop and execute an SF_6 risk assessment and mitigation strategy. This assessment and strategy will include: - ◆ Risk of SF₆ emission (leakage and catastrophic release) to plant staff by identifying how and where gas could collect - ◆ Review and proper distribution of MSDS for SF₆ and SF₆ decomposition products and communication of risks to staff - ◆ Use of adequate, properly calibrated SF₆ gas detectors by maintenance staff to indicate presence or absence of SF₆ and SF₆ byproducts. The slight reduction of oxygen, measured by an oxygen meter, may not reflect the concentration of hazardous byproducts that may be present - ◆ Permanent installation and use of SF₆ gas monitoring alarms, located where SF₆ gas could accumulate - ◆ Proper use and response to SF₆ gas pressure or density alarms that are furnished with SF₆ equipment - ◆ Strategy for evacuating SF₆ gas from accumulation locations - ◆ Use of SF₆ warning signage in accordance with Section 4 of EPRI's "Practical Guide to SF₆ Handling Practices" - ◆ Adequacy and availability of PPE, including protective clothing and respiratory devices. See Section 6 and Appendix B of the EPRI guide # 13. RECYCLING, DISPOSAL, ENVIRONMENTAL PROTECTION, TRANSPORTATION, AND STORAGE Where technically and economically feasible, Reclamation offices will recycle (recover and reuse) SF_6 gas. Reclamation will comply with all applicable Federal and State regulations and laws regarding disposal, environmental protection, transportation, and storage of SF₆ gas, gas byproducts, and contaminated equipment, tools, materials, clothing, and PPE. Refer to Sections 7 and 8 of the EPRI "Practical Guide to SF₆ Handling Practices" and Reclamation Safety and Health Standards for guidance. ### 14. PROCUREMENT OF SF₆ EQUIPMENT When procuring SF₆ equipment, consideration must be given to mitigating future gas leakage. Procurements should address the following: - ◆ Acquisition of sealed-for-life and "ultra-low-leakage" equipment, where feasible - ◆ Acquisition and application of all available gas leakage monitoring systems, such as overpressure, refilling, and low-pressure alarms - ◆ Acquisition and application of SF₆ gas and SF₆ decomposition product detectors, both portable (for maintenance use) and permanently installed (for plant alarm) - ◆ Acquisition of an adequate "gas cart" for proper filling and evacuating of SF₆ equipment - ◆ Provision by the contractor of adequate training in SF₆ operation and maintenance - ◆ Provision by the contractor of appropriate leakage and spill containment and cleanup equipment and supplies ### 15. GAS CARTS Gas handling apparatus (i.e., gas carts) are essential for filling and evacuating SF_6 equipment. See EPRI "Practical Guide to SF_6 Handling Practices," section 5.1.1 for more information. Reclamation SF_6 gas carts should conform to EPRI guidelines in construction and be operated and maintained using EPRI's recommendations. Care should be exercised when handling and transporting gas bottles and carts because residual gas can be present. Proper evacuation procedures should be followed. Gas carts require adequate maintenance and testing. Gas carts should be identified in MAXIMO as an individual piece of equipment requiring preventive maintenance. Job plans and work orders should be developed, with maintenance steps, in accordance with section 5.1.1 of the EPRI guidelines, including: - ◆ Cart preparation and conditioning - ◆ Loss of pressure check - ◆ Loss of vacuum check - ◆ Scrubber testing - ◆ Flowmeter testing - ◆ Vacuum pump maintenance - ◆ Moisture testing - ◆ SF₆ percentage testing - ♦ Byproduct tube inspection Maintenance of gas carts will be verified under the electrical portion of the Reclamation Power Review of O&M Program. ### APPENDIX A # SF_6 Location At Reclamation Facilities – 2003 | | Table | T. Of 6 Location in an | u Near Reclamation Faci | | T | |--------|--------------------------|------------------------|---------------------------------------|------------------------------|---------------| | Region | Plant | Equipment type | Equipment designation | Pounds of
SF ₆ | Maintained by | | PN | Coulee 500
switchyard | Circuit breaker | PCB 2092 G-20 | 1,570 | Reclamation | | PN | Coulee 500
switchyard | Circuit breaker | PCB 2192 G-21 | 1,570 | Reclamation | | PN | Coulee 500
switchyard | Circuit breaker | PCB 2292 G-22 | 1,570 | Reclamation | | PN | Coulee 500
switchyard | Circuit breaker | PCB 2496 G-24 | 1,570 | Reclamation | | PN | Coulee 500
switchyard | Gas cart | Limco PET2015 | 200 | Reclamation | | PN | Coulee 500
switchyard | Gas cylinders | UN 1080 | 30x115 | Reclamation | | PN | Coulee 230
switchyard | Circuit breaker | PCB 6084 Bus Tie | 330 | Reclamation | | PN | Coulee 230
switchyard | Circuit breaker | PCB 6582 CSY #1 | 330 | Reclamation | | PN | Coulee 115
switchyard | Circuit breaker | PCB 2172 Trans.
Bkr. | 200 | Reclamation | | PN | Coulee 115
switchyard | Circuit breaker | PCB 2372 LC #6 | 200 | Reclamation | | PN | Coulee 115
switchyard | Gas cylinder | UN 1080 | 115 | Reclamation | | PN | Coulee PG Plant | GIS | KP10A 3080, 3180,
3280, 3081, 3181 | 400 | Reclamation | | PN | Coulee PG Plant | Gas cylinders | UN 1080 | 2x115 | Reclamation | | PN | Coulee industrial area | Switch | UIAHA2 | 13.1 | Reclamation | | PN | Coulee industrial area | Gas cylinders | UN 1080 | 2x115 | Reclamation | | PN | Green Springs | Circuit breaker | JX1A | 25 | Reclamation | | PN | Palisades | Circuit breaker | 1062 | 115 | Reclamation | | PN | Minidoka | Circuit breaker | 562 | 80 | Reclamation | | | i abie | 1.—SF ₆ Location in an | Near Reclamation Facil | | 1 | |--------|--------------|-----------------------------------|------------------------|------------------------------|---------------| | Region | Plant | Equipment type | Equipment designation | Pounds of
SF ₆ | Maintained by | | PN | Minidoka | Circuit breaker | 662 | 80 | Reclamation | | PN | Minidoka | Gas cart | | | Reclamation | | PN | Hungry Horse | Circuit breaker | JY1A / 2182 | 95 | ВРА | | PN | Hungry Horse | Circuit breaker | JY2A / 2282 | 95 | ВРА | | PN | Hungry Horse | Circuit breaker | JY3A / 2382 | 95 | ВРА | | PN | Hungry Horse | Circuit breaker | JY4A / 2482 | 95 | ВРА | | PN | Hungry Horse | Gas cylinder | | 5x120 | вра | | MP | New Melones | Gas cart | | | Reclamation | | MP | New Melones | Gas cylinder | | | Reclamation | | MP | New Melones | Circuit breaker | 122 | 15.8 | Reclamation | | MP | New Melones | Circuit breaker | 222 | 15.8 | Reclamation | | MP | Folsom | Circuit breaker | 162 | 115 | Reclamation | | MP | Folsom | Circuit breaker | 282 | 140 | Reclamation | | MP | Folsom | Circuit breaker | 382 | 140 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | Region | Plant | Equipment type | Equipment designation | Pounds of
SF ₆ | Maintained by | |--------|---------------------|-----------------|-----------------------|------------------------------|---------------| | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Circuit breaker | | 100 | Reclamation | | LC | Hoover | Gas cylinder | | 119.1 | Reclamation | | LC | Hoover | Gas cylinder | | 117.3 | Reclamation | | LC | Hoover | Gas cylinder | | 116.5 | Reclamation | | LC | Hoover | Gas cylinder | | 50.5 | Reclamation | | UC | Glen Canyon | Circuit breaker | | 36.74 | Reclamation | | UC | Glen Canyon | Circuit breaker | | 36.74 | Reclamation | | UC | Glen Canyon | Circuit breaker | | 36.74 | Reclamation | | UC | Glen Canyon | Circuit breaker | | 36.74 | Reclamation | | UC | Glen Canyon | Circuit breaker | | 36.74 | Reclamation | | UC | Glen Canyon | Circuit breaker | | 36.74 | Reclamation | | UC | Glen Canyon | Circuit breaker | | 36.74 | Reclamation | | UC | Glen Canyon | Circuit breaker | | 36.74 | Reclamation | | UC | Glen Canyon | Gas cart | Dilo D320 | | Reclamation | | UC | Glen Canyon | Gas cylinder | | 90 | Reclamation | | UC | Glen Canyon | Gas cylinder | | 5 | Reclamation | | UC | Pinabete Substation | Circuit switch | | 15 | BIA | | UC | Gallegos PP | Circuit switch | | 15 | BIA | | UC | Gallegos PP | Circuit switch | | 15 | BIA | | UC | Gallegos PP | Circuit switch | | 15 | BIA | | UC | PP A0.8L | Breaker | | 15 | BIA | | UC | PP A0.8L | Breaker | | 15 | BIA | | UC | PP A0.8L | Breaker | | 15 | BIA | | Region | Plant | Equipment type | Equipment designation | Pounds of
SF ₆ | Maintained by | |--------|----------------|-----------------|-----------------------|------------------------------|---------------| | UC | PP A0.8L | Gas cylinder | | 12 | BIA | | UC | PP A0.8L | Gas cylinder | | 13 | BIA | | GP | Mt. Elbert | Circuit breaker | U1A | 15.8 | Reclamation | | GP | Mt. Elbert | Circuit breaker | U2A | 15.8 | Reclamation | | GP | Mt. Elbert | Circuit breaker | JV2A | 132 | WAPA | | GP | Mt. Elbert | Circuit breaker | JV3A | 132 | WAPA | | GP | Mt. Elbert | Gas cart | Cryoquip 2BC | 115 capacity | Reclamation | | GP | Green Mountain | Circuit breaker | JZ1A | 15 | Reclamation | | GP | Green Mountain | Circuit breaker | JZ2A | 15 | Reclamation | | GP | Green Mountain | Circuit breaker | JZ3A | 15 | Reclamation | | GP | Green Mountain | Circuit breaker | JZ5A | 15 | Reclamation | | GP | Green Mountain | Gas cylinder | Four cylinders | 4x20 | Reclamation | | GP | Flatiron | Circuit breaker | U1A2 | 15.8 | Reclamation | | GP | Flatiron | Circuit breaker | U1A3 | 15.8 | Reclamation | | GP | Flatiron | Circuit breaker | U2A2 | 15.8 | Reclamation | | GP | Flatiron | Circuit breaker | U2A3 | 15.8 | Reclamation | | GP | Flatiron | Gas cart | Cryoquip HC series | 0 | Reclamation | | GP | Flatiron | Gas cylinders | Two cylinders | 2x5 | Reclamation | | GP | Mary's Lake | Circuit breaker | JYA | 77 | Reclamation | | GP | Seminoe | Circuit breaker | JY2A | 60 | WAPA | | GP | Seminoe | Gas cart | | 115 capability | Reclamation | | GP | Seminoe | Gas cylinders | | 2x115 | Reclamation | | GP | Kortes | Circuit breaker | JY1A | 60 | WAPA | | GP | Kortes | Circuit breaker | JY4A | 60 | WAPA | | GP | Kortes | Gas cylinders | | 2x115 | Reclamation | ### APPENDIX B ### SF₆ Emissions Inventory Reporting Protocol and Form This protocol provides a template for reporting annual SF_6 emissions based on annual changes in SF_6 inventory. Use of the protocol to complete the SF_6 Emissions Reporting Form requires the following data: - ◆ SF₆ gas in inventory at the beginning of the reporting year - \bullet SF₆ gas in inventory at the end of the reporting year - ◆ SF₆ gas additions to the inventory (e.g., purchases) - ◆ SF₆ gas subtractions from the inventory (e.g., sales or returns) - Changes in nameplate capacity Gas in inventory refers to SF_6 gas contained in storage cylinders, gas carts, and other storage containers. It does not refer to SF_6 gas held in operating equipment.³ Gas additions and subtractions refer to SF_6 gas placed in or removed from the stored inventory, respectively. Gas additions also include SF_6 provided by equipment manufacturers with or inside new equipment. Complete tables 1 and 2 to estimate annual emissions. Use the Comments box to describe the means used to obtain a specific quantitative value (e.g., measured, estimated using rough data, or other comments including perceived accuracy of the form entries). Add additional comment sheets if necessary. ### Accounting for Acts of Nature and Other Non-Preventable Events An act of nature (e.g., lightning or earthquake) or other nonpreventable event of equipment failure (e.g., from a severe electrical fault) that destroys or damages a piece of equipment might result in a sudden, "catastrophic" loss of SF₆ to the atmosphere.⁴ If SF₆ loss to the atmosphere occurs as a result of an act of nature or other non-preventable event, this loss should be reported on the form kept separate from normal annual emissions.⁵ ³ Reporting is required only on the change in inventory, not the absolute value. This method assumes gas is being added to equipment as needed to ensure adequate insulation. ⁴ The term "nonpreventable" does not include releases from properly functioning equipment (caused by static and dynamic operation) or leakage (e.g., caused by deteriorated and leaking gaskets or seals). ⁵ Such an event may also require reporting according to the Power Operation and Maintenance Incident Evaluation and Reporting Program and the Emergency Notification System. ### SF_6 EMISSIONS REPORTING FORM | Date: Office: | | | Contact: | | | | |--|-------------------------|--|----------|-----------------------|----------|--| | Table 1 | | | | | | | | Inventory | | | | nount (lbs) | Comments | | | Α | Beginning of year | | | | | | | В | End of year | | | | | | | | | Table 2 | | | | | | | | Additions to Inv | ento | ory | | | | | | | | nount (lbs) | Comments | | | equipment | manufacturers | ding SF ₆ provided by with or inside new equipment) | | | | | | 2. SF ₆ retu | rned to the site | after off-site recycling | | | | | | C: Total A | dditions (add it | ems 1 and 2) | | | | | | | | Subtractions from | | | | | | | | | Ar | nount (lbs) | Comments | | | retired equ | ipment) | ntities, including gas left in | | | | | | 4. SF ₆ retu | rned to supplier | | | | | | | 5. SF ₆ take | en from storage | or equipment and disposed of | | | | | | 6. SF ₆ taken from storage or equipment and sent off site for recycling | | | | | | | | D: Total Subtractions (add items 3-6) | | | | | | | | Change to Namepla | | | | apacity | | | | | | | Ar | nount (lbs) | Comments | | | 7. Total na | meplate capacit | y of new equipment | | | | | | 8. Total nameplate capacity of retiring equipment | | | | | | | | E: Change to Nameplate Capacity (subtract item 8 from item 7) | | | | | | | | Total Annual Emissions = A – B + C – D – E | | | | | | | | Release from Act of Nature or Other Unpreventable Event | | | | | | | | | | | | - p | - | | | Туре | e of Event ¹ | Equipment damaged | | Amount released (lbs) | Comments | | | | | | | | | | | | | | | | | | ¹ Lightning, earthquake, electrical fault, vandalism, etc.